18,249 research outputs found

    Stabilizing Entangled States with Quasi-Local Quantum Dynamical Semigroups

    Full text link
    We provide a solution to the problem of determining whether a target pure state can be asymptotically prepared using dissipative Markovian dynamics under fixed locality constraints. Beside recovering existing results for a large class of physically relevant entangled states, our approach has the advantage of providing an explicit stabilization test solely based on the input state and constraints of the problem. Connections with the formalism of frustration-free parent Hamiltonians are discussed, as well as control implementations in terms of a switching output-feedback law.Comment: 11 pages, no figure

    Efficient generation of universal two-dimensional cluster states with hybrid systems

    Full text link
    We present a scheme to generate two-dimensional cluster state efficiently. The number of the basic gate-entangler-for the operation is in the order of the entanglement bonds of a cluster state, and could be reduced greatly if one uses them repeatedly. The scheme is deterministic and uses few ancilla resources and no quantum memory. It is suitable for large-scale quantum computation and feasible with the current experimental technology.Comment: 6 pages, 5 figure

    Quantum computational tensor network on string-net condensate

    Full text link
    The string-net condensate is a new class of materials which exhibits the quantum topological order. In order to answer the important question, "how useful is the string-net condensate in quantum information processing?", we consider the most basic example of the string-net condensate, namely the Z2Z_2 gauge string-net condensate on the two-dimensional hexagonal lattice, and show that the universal measurement-based quantum computation (in the sense of the quantum computational webs) is possible on it by using the framework of the quantum computational tensor network. This result implies that even the most basic example of the string-net condensate is equipped with the correlation space that has the capacity for the universal quantum computation.Comment: 5 pages, 4 figure

    Stabilization of solitons of the multidimensional nonlinear Schrodinger equation: Matter-wave breathers

    Full text link
    We demonstrate that stabilization of solitons of the multidimensional Schrodinger equation with a cubic nonlinearity may be achieved by a suitable periodic control of the nonlinear term. The effect of this control is to stabilize the unstable solitary waves which belong to the frontier between expanding and collapsing solutions and to provide an oscillating solitonic structure, some sort of breather-type solution. We obtain precise conditions on the control parameters to achieve the stabilization and compare our results with accurate numerical simulations of the nonlinear Schrodinger equation. Because of the application of these ideas to matter waves these solutions are some sort of matter breathers

    Classification of the phases of 1D spin chains with commuting Hamiltonians

    Full text link
    We consider the class of spin Hamiltonians on a 1D chain with periodic boundary conditions that are (i) translational invariant, (ii) commuting and (iii) scale invariant, where by the latter we mean that the ground state degeneracy is independent of the system size. We correspond a directed graph to a Hamiltonian of this form and show that the structure of its ground space can be read from the cycles of the graph. We show that the ground state degeneracy is the only parameter that distinguishes the phases of these Hamiltonians. Our main tool in this paper is the idea of Bravyi and Vyalyi (2005) in using the representation theory of finite dimensional C^*-algebras to study commuting Hamiltonians.Comment: 8 pages, improved readability, added exampl

    Perfect Sampling with Unitary Tensor Networks

    Get PDF
    Tensor network states are powerful variational ans\"atze for many-body ground states of quantum lattice models. The use of Monte Carlo sampling techniques in tensor network approaches significantly reduces the cost of tensor contractions, potentially leading to a substantial increase in computational efficiency. Previous proposals are based on a Markov chain Monte Carlo scheme generated by locally updating configurations and, as such, must deal with equilibration and autocorrelation times, which result in a reduction of efficiency. Here we propose a perfect sampling scheme, with vanishing equilibration and autocorrelation times, for unitary tensor networks -- namely tensor networks based on efficiently contractible, unitary quantum circuits, such as unitary versions of the matrix product state (MPS) and tree tensor network (TTN), and the multi-scale entanglement renormalization ansatz (MERA). Configurations are directly sampled according to their probabilities in the wavefunction, without resorting to a Markov chain process. We also describe a partial sampling scheme that can result in a dramatic (basis-dependent) reduction of sampling error.Comment: 11 pages, 9 figures, renamed partial sampling to incomplete sampling for clarity, extra references, plus a variety of minor change
    corecore